Coupled Nonlinear Schrödinger equation and Toda equation (the Root of Integrability)

نویسنده

  • Masato Hisakado
چکیده

We consider the relation between the discrete coupled nonlinear Schrödinger equation and Toda equation. Introducing complex times we can show the intergability of the discrete coupled nonlinear Schrödinger equation. In the same way we can show the integrability in coupled case of dark and bright equations. Using this method we obtain several integrable equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinearization of Coupled Nonlinear Schrödinger Type Equations: Integrabilty and Solitons

Considering the coupled envelope equations in nonlinear couplers, the question of integrability is attempted. It is explicitly shown that Hirota’s bilinear method is one of the simple and alternative techniques to Painlevé analysis to obtain the integrability conditions of the coupled nonlinear Schrödinger (CNLS) type equations. We also show that the coupled Hirota equation introduced by Tasgal...

متن کامل

N ov 2 00 1 Singularity analysis of a new discrete nonlinear Schrödinger equation

We apply the Painlevé test for integrability to the new discrete nonlinear Schrödinger equation introduced by Leon and Manna. Since the singular expansions of solutions of this equation turn out to contain non-dominant logarithmic terms, we conclude that the studied equation is nonintegrable. This result supports the recent observation of Levi and Yamilov that the Leon–Manna equation does not a...

متن کامل

Algebro-geometric Poisson Brackets for Real Finite-zone Solutions of the Sine-gordon Equation and the Nonlinear Schrödinger Equation

Algebro-geometric Poisson brackets for real, finite-zone solutions of the Korteweg–de Vries (KdV) equation were studied in [1]. The transfer of this theory to the Toda lattice and the sinh-Gordon equation is more or less obvious. The complex part of the finite-zone theory for the nonlinear Schrödinger equation (NS) and the sine-Gordon equation (SG) is analogous to KdV, but conditions that solut...

متن کامل

Determinant Form of Dark Soliton Solutions of the Discrete Nonlinear Schrödinger Equation

It is shown that the N-dark soliton solutions of the integrable discrete nonlinear Schrödinger (IDNLS) equation are given in terms of the Casorati determinant. The conditions for reduction, complex conjugacy and regularity for the Casorati determinant solution are also given explicitly. The relationship between the IDNLS and the relativistic Toda lattice is discussed.

متن کامل

Integrable semi-discretization of the coupled nonlinear Schrödinger equations

A system of semi-discrete coupled nonlinear Schrödinger equations is studied. To show the complete integrability of the model with multiple components, we extend the discrete version of the inverse scattering method for the single-component discrete nonlinear Schrödinger equation proposed by Ablowitz and Ladik. By means of the extension, the initial-value problem of the model is solved. Further...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008